| 000 | 06308cam a2200697Ia 4500 | ||
|---|---|---|---|
| 999 |
_c33707 _d33707 |
||
| 001 | on1119643625 | ||
| 003 | OCoLC | ||
| 005 | 20200702121258.0 | ||
| 006 | m d | ||
| 007 | cr un|---aucuu | ||
| 008 | 190914s2019 si o 000 0 eng d | ||
| 015 |
_aGBB9I4145 _2bnb |
||
| 016 | 7 |
_a019543077 _2Uk |
|
| 020 |
_a9789811399770 _q(electronic bk.) |
||
| 020 |
_a9811399778 _q(electronic bk.) |
||
| 020 | _z9789811399763 | ||
| 024 | 8 | _a10.1007/978-981-13-9 | |
| 024 | 7 |
_a10.1007/978-981-13-9977-0 _2doi |
|
| 035 | _a2248781 | ||
| 035 |
_a(OCoLC)1119643625 _z(OCoLC)1121274960 _z(OCoLC)1126180851 |
||
| 037 |
_acom.springer.onix.9789811399770 _bSpringer Nature |
||
| 040 |
_aEBLCP _beng _epn _cEBLCP _dGW5XE _dLQU _dOCLCF _dOCLCQ _dUPM _dOCLCQ _dUKMGB _dN$T |
||
| 049 | _aMAIN | ||
| 050 | 4 | _aR857.M3 | |
| 072 | 7 |
_aTGM _2bicssc |
|
| 072 | 7 |
_aTEC021000 _2bisacsh |
|
| 072 | 7 |
_aTGM _2thema |
|
| 072 | 7 |
_aTCB _2thema |
|
| 082 | 0 | 4 |
_a610.28 _223 |
| 245 | 0 | 0 |
_aBiomaterials in orthopaedics and bone regeneration : _bdesign and synthesis / _cPreetkanwal Singh Bains, Sarabjeet Singh Sidhu, Marjan Bahraminasab, Chander Prakash, editors. |
| 260 |
_aSingapore : _bSpringer, _c2019. |
||
| 300 | _a1 online resource (261 pages) | ||
| 336 |
_atext _btxt _2rdacontent |
||
| 337 |
_acomputer _bc _2rdamedia |
||
| 338 |
_aonline resource _bcr _2rdacarrier |
||
| 347 |
_atext file _bPDF _2rda |
||
| 490 | 1 | _aMaterials Horizons: from Nature to Nanomaterials Ser. | |
| 500 | _a3 Innovative Approaches for Enamel Regeneration | ||
| 505 | 0 | _aIntro; Preface; Contents; About the Editors; 1 Parametric Evaluation of Medical Grade Titanium Alloy in MWCNTs Mixed Dielectric Using Graphite Electrode; 1 Introduction; 2 Materials and Methods; 2.1 Materials; 2.2 Pilot Experimentation; 2.3 Taguchi L18 Design of Experiments; 2.4 Experimentation; 3 Results and Discussion; 3.1 ANOVA of S/N Ratios for MRR, TWR, and SR; 3.2 Surface Topology and Phase Transformation of ED Machined Samples; 4 Conclusions; References; 2 Computational Tailoring of Orthopaedic Biomaterials: Design Principles and Aiding Tools; 1 Introduction | |
| 505 | 8 | _a2 Rules, Procedures and Methods Used in Computational Design of Biomaterials for Orthopaedic Implants2.1 Computational Methods for Biomaterial Design in Hip and Knee Replacements; 2.2 Bone Scaffolds; 3 Efficient Tools in the Biomaterial Design Process; 4 Conclusions; References; 3 EDM Surface Treatment: An Enhanced Biocompatible Interface; 1 Introduction; 2 Materials and Methods; 2.1 In Vitro Cytocompatibility Study; 3 Results and Discussion; 4 Conclusions; References; 4 Development of Cellular Construction for the Jaw Bone Defects Replacement by Selective Laser Melting; 1 Introduction | |
| 505 | 8 | _a2 Materials, Equipment, and Results of Research2.1 Modeling of Cellular Constructions; 2.2 Ti6Al4V Powder Materials Characteristic; 2.3 Influence of Laser Melting Conditions on Geometrics of Bridges in Cellular Materials; 2.4 Ti6Al4V Cellular Materials Compression Test; 2.5 Testing of Cellular Structures Implantation into Laboratory Animals; 3 Conclusions; References; 5 Squeeze Film Bearing Characteristics for Synovial Joint Applications; 1 Squeeze Film Bearing Lubrication in Synovial Joints; 1.1 Squeeze Film Bearings in Synovial Joints; 1.2 Couple Stress Fluids | |
| 505 | 8 | _a1.3 Layered Lubrication Analysis2 Parallel Plate Layered Lubrication with Couple Stress Fluids; 2.1 Porous-Surface Double-Layer Parallel Plate; 2.2 Porous-Surface Layer Parallel Plate; 2.3 Surface-Surface Layer Parallel Plate; 3 Partial Journal Bearing Layered Lubrication with Couple Stress Fluids; 3.1 Porous-Surface Double-Layer Partial Journal Bearing; 3.2 Porous-Surface Layer Partial Journal Bearing; 3.3 Surface-Surface Layer Partial Journal Bearing; 4 Conclusions; References | |
| 505 | 8 | _a6 Passive Prosthetic Ankle and Foot with Glass Fiber Reinforced Plastic: Biomechanical Design, Simulation, and Optimization1 Introduction; 2 Biomechanical Design; 2.1 Design Criteria; 2.2 Structural Design; 3 Simulations; 3.1 Stiffness; 3.2 Reaction Moment; 3.3 Strain Energy; 3.4 Stress Analysis; 3.5 Dynamics; 4 Optimization; 4.1 Formulation for Optimization Problem; 4.2 Methodology; 4.3 Results and Discussion; 5 Conclusions; References; 7 Biomaterials in Tooth Tissue Engineering; 1 Introduction; 2 Strategies for Tooth Regeneration; 2.1 Scaffold-Based Approach; 2.2 Scaffold-Free Approach | |
| 520 | _aThis book focuses on the recent advances in the field of orthopaedic biomaterials, with a particular emphasis on their design and fabrication. Biomimetic materials, having similar properties and functions to that of the natural tissue, are becoming a popular choice for making customized orthopaedic implants and bone scaffolds. The acceptability of these materials in the human body depends on the right balance between their mechanical and biological properties. This book provides a comprehensive overview of the state-of-the-art research in this rapidly evolving field. The chapters cover different aspects of multi-functional biomaterials design, and cutting-edge methods for the synthesis and processing of these materials. Advanced manufacturing techniques, like additive manufacturing, used for developing new biomimetic materials are highlighted in the book. This book is a valuable reference for students and researchers interested in biomaterials for orthopaedic applications. | ||
| 588 | 0 | _aPrint version record. | |
| 590 | _aAdded to collection customer.56279.3 | ||
| 650 | 0 | _aBiomedical materials. | |
| 650 | 0 | _aOrthopedic implants. | |
| 650 | 7 |
_aBiomedical materials. _2fast _0(OCoLC)fst00832586 |
|
| 650 | 7 |
_aOrthopedic implants. _2fast _0(OCoLC)fst01048547 |
|
| 655 | 4 | _aElectronic books. | |
| 700 | 1 | _aBains, Preetkanwal Singh. | |
| 700 | 1 | _aSidhu, Sarabjeet Singh. | |
| 700 | 1 | _aBahraminasab, Marjan. | |
| 700 | 1 | _aPrakash, Chander. | |
| 776 | 0 | 8 |
_iPrint version: _aBains, Preetkanwal Singh. _tBiomaterials in Orthopaedics and Bone Regeneration : Design and Synthesis. _dSingapore : Springer, �2019 _z9789811399763 |
| 830 | 0 | _aMaterials Horizons: from Nature to Nanomaterials. | |
| 850 | _aNMUCL | ||
| 856 | 4 | 0 |
_3EBSCOhost _uhttp://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=2248781 |
| 942 |
_2nlm _cEBK |
||